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Natan Nagar 1, Jérôme Tubiana 2, Gil Loewenthal 1, Haim J. Wolfson 2,
Nir Ben Tal 3 and Tal Pupko 1⇑

1 - The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University,

Tel Aviv 69978, Israel

2 - Blavatnik School of Computer Science, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel

Aviv 69978, Israel

3 - School of Neurobiology, Biochemistry & Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel

Aviv 69978, Israel
Correspondence to Tal Pupko: talp@tauex.tau.ac.il (T. Pupko)
https://doi.org/10.1016/j.jmb.2023.168155
Edited by Rita Casadio

Abstract

Multiple sequence alignments (MSAs) are the workhorse of molecular evolution and structural biology
research. From MSAs, the amino acids that are tolerated at each site during protein evolution can be
inferred. However, little is known regarding the repertoire of tolerated amino acids in proteins when only
a few or no sequence homologs are available, such as orphan and de novo designed proteins. Here we
present EvoRator2, a deep-learning algorithm trained on over 15,000 protein structures that can predict
which amino acids are tolerated at any given site, based exclusively on protein structural information
mined from atomic coordinate files. We show that EvoRator2 obtained satisfying results for the prediction
of position-weighted scoring matrices (PSSM). We further show that EvoRator2 obtained near state-of-
the-art performance on proteins with high quality structures in predicting the effect of mutations in deep
mutation scanning (DMS) experiments and that for certain DMS targets, EvoRator2 outperformed
state-of-the-art methods. We also show that by combining EvoRator20s predictions with those obtained
by a state-of-the-art deep-learning method that accounts for the information in the MSA, the prediction
of the effect of mutation in DMS experiments was improved in terms of both accuracy and stability.
EvoRator2 is designed to predict which amino-acid substitutions are tolerated in such proteins without
many homologous sequences, including orphan or de novo designed proteins. We implemented our
approach in the EvoRator web server (https://evorator.tau.ac.il).

� 2023 Published by Elsevier Ltd.
Introduction

Sequence variation in proteins stems from the
filtering of random mutations by evolutionary
pressures that act to maintain protein structural
and functional integrity.1–2 Characterizing the
residue-level distribution of substitutions is an
important task in evolutionary studies, with implica-
tions in variant prioritization for clinical diagnostics,
de novo protein design, and identification of func-
by Elsevier Ltd.
tional sites.3–4 Experimental methods such as deep
mutational scan (DMS) are used to quantify the
effect of non-synonymous mutations on a specific
phenotypic outcome.5–7 Such approaches are
costly and time consuming and cannot be applied
to analyze the large number of protein records
accumulating in public databases.
The most common approaches for predicting

residue-level tolerated sets of amino acids heavily
rely on multiple sequence alignments (MSA):
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given a query sequence, homologous sequences
are identified and aligned. The various existing
methods mainly differ in how they process the
resulting MSA to make predictions. Methods such
as SIFT8 and EVCouplings9 totally depend on
MSAs, while methods such as PolyPhen210 com-
bine both conservation and structure to make pre-
dictions. The highly accurate predictions obtained
by methods such as DeepSequence11 and EVE,12

depend on the extraction of MSA-based latent vari-
ables, which are informative for estimating the prob-
ability of observing each substitution. These
methods implement deep-learning algorithms that
require separate training for each protein family of
interest, which can be computationally demanding
in large scale analyses. The requirement for an
alignment means that residue-level distribution of
allowable substitutions cannot be accurately pre-
dicted for proteins with a few or no homologs,
including orphan proteins, de novo designed pro-
teins, and newly emerged viral proteins. In other
cases, the information content of the MSA in the
presence of indels is the culprit, e.g., it is difficult
to predict the effect of substitutions in an alignment
site that ismostly gap characters.1 Novel sequence-
based, MSA-independent approaches rely on pro-
tein language models that are trained on raw
sequence data. As noted by Laine et al., such mod-
els are huge in size, require delicate fine tuning,
depend on multiple, slow training steps, and require
suitable hardware.13 The most accurate predictions
are obtained by an ensemble approach, which com-
bines the large langugae model Tranception and
the MSA based model EVE.14 However, prediction
accuracy still highly depends on the number of sim-
ilar sequences a given protein has in public
sequence databases.
The primary determinant of site-specific

distribution of substitutions is considered to be the
structural context of the site in question.1–2,15–16

Purifying selection is expected to act on sites with
many intramolecular interactions. Such sites are
typically located at the tightly-packed core of the
proteins.17–18 Thus, only substitutions to amino
acids with similar spatial physicochemical proper-
ties as the wild-type are expected in such sites. In
contrast, sites that face the solvent are generally
expected to tolerate a much larger number of sub-
stitutions. In case of sites that are also involved in
intermolecular interactions, the type of selection
regime and its effect on the distribution of substitu-
tions is context dependent.1–2,19 For example,
strong purifying selection is expected to act on cat-
alytic sites,20 allosteric sites,21 post-translationally
modified sites,22 and on sites essential for complex
formation.23 Positive selection due to a changing
environment is expected to affect sites that are
directly involved in the selected function of a given
protein-coding gene.22 Examples include sites in
viral proteins under drug pressure,24 B-cell epi-
topes,25 and toxins.26 Thus, the residue-level distri-
2

bution of substitutions observed across protein
families evolved under constraints either on
intramolecular or intermolecular interactions, or a
combination of both. A complete description of
these constraints requires knowing all interaction
partners and conformational states of a given pro-
tein. In most practical cases such data are impossi-
ble to obtain. By identifying disagreements between
empirical and structure-based expectations on the
distribution of substitutions at residue level, one
can potentially identify sites that are involved in bio-
logically significant interactions.1

Predicting the set of tolerated amino acids at each
position based on structure only can be obtained
using methods such as FoldX27 and Rosetta.28

These methods use force-field models to estimate
variants’ impact on structural stability. Machine-
learning (ML) based models can serve as an alter-
native to force-field calculations, as they are cap-
able of generalizing to unseen protein families.
We recently introduced EvoRator, a web server that
implements an ML-regression algorithm to predict
residue-level evolutionary rates based on protein
structures.29 Here we present EvoRator2, a user-
friendly web server that exploits deep learning to
predict the per-site distribution of substitutions
based on protein structure. EvoRator2 utilizes a
unique structure-based representation that is cre-
ated by combining a set of physicochemical and
structural characteristic (e.g., amino-acid composi-
tion, relative solvent accessibility, secondary struc-
ture) with features of atoms and amino acids that
are based on their network topology and on the
spatial-chemical patterns of their neighbors.
EvoRator2 is designed to predict per-site distribu-
tion of substitutions without using MSAs. Discrep-
ancies between the MSA-based and structure-
based estimates are inferred to reflect functional
constraints beyond those imposed by the structure.
Using a previously published standardized experi-
mental DMS data, we demonstrate that EvoRator2
can accurately predict substitutions. We study the
performance as a function of the three-
dimensional (3D) structure accuracy. We also show
that when EvoRator2 is integrated with a method
that relies on MSAs (generating the EvoRator2-
MSA model), the combined model outperforms
existing approaches, especially for proteins charac-
terized by inexistent or non-informative MSAs.
Methods

Data preparation

We extracted features for a set of 20,691 unique
chains (obtained from 19,683 randomly chosen
distinct PDB files) with matching position-weighted
scoring matrices (PSSMs) mined from the
ConSurf-DB,30–37 which stores over 100,000
unique chains, their MSAs and conservation scores
at the single residue level. The PSSM of each
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record in ConSurf-DB is based on an MSA of a non-
redundant set of homologues obtained by clustering
candidate homologues sequences at 95% using
CD-HIT.36–38
Features

EvoRator2 exploits features extracted by
ScanNet39–40 and EvoRator29 to predict the site-
specific distribution of allowable substitutions. Here
we briefly describe these features. Both ScanNet
and EvoRator extract features from PDB files.
These features are extracted from the biological
assembly file if it exists. ScanNet implements a geo-
metric deep learning algorithm that builds represen-
tations of atoms and amino acids based on the
spatio-chemical arrangement of their neighbors.
These representations implicitly capture structural
parameters such as solvent accessibility, sec-
ondary structure, and surface convexity. EvoRator
extracts these and other features directly, including
glycosylation sites, binding sites, and protein–pro-
tein interaction sites, as well as features extracted
from graph-based representations of proteins, in
which the nodes represent Ca atoms, and the edges
represent interactions between Ca atoms that are
within less than 7 �A from each other. We used
Scikit-learn41 for processing the above features as
follows: duplicate and constant features are
removed; features withmissing values are filled with
the median of their existing values; categorical fea-
tures are one-hot encoded, and numerical features
are scaled by subtracting the mean of the feature
from each of its values and dividing by the standard
deviation of the feature. In total, we used 515 fea-
tures (Supplementary Table S1).
Evaluation criterion

The goal of our algorithm is to predict the
spectrum of allowable substitutions at each site.
This spectrum is mathematically described as a
probability distribution over the 20 amino acids, at
each site. The probability of each amino acid at a
specific site is henceforth referred to as the score
of that amino acid. To train and estimate model
performance, true probabilities of amino-acids at
each site should be known. In the following we
assume that amino-acid frequencies obtained by
analyzing large MSAs reflect close enough
estimates to the true probabilities, and we term
them “true” scores. Accuracy is then estimated in
terms of the Spearman’s rank correlation
coefficient q between the model scores and the
true scores. For benchmarking, model scores are
also compared to scores obtained from DMS
experiments (see below).
Deep learning

For predicting the site-specific distribution of
substitutions using the above data, we trained a
3

feed-forward multi-layer perceptron architecture
with back-propagation42 to minimize the Kullback-
Leibler divergence43 between the predicted and
true scores of each site, using the Keras44 imple-
mentation in the deep learning library Tensorflow.45

The model consists of an input layer that has 515
nodes—one node per feature, followed by two hid-
den layers of 515 nodes with a rectified linear unit
activation function, with l2-regularization on each
layer’s weights (k ¼ 5� 10-4, selected based on
previous experience with similar datasets), and
batch normalization following each hidden layer.
Such a design is sufficient to approximate most dis-
crimination tasks using less computational
resources compared to a network with more hidden
layers.46 Finally, there is an output layer that has 20
nodes with softmax activation function that predicts
a vector of residue probabilities. To avoid overfitting
and in order to reliably estimates of model perfor-
mance, we partitioned our data to training, valida-
tion and test sets, comprising 16,135 proteins, 360
proteins, and 711 proteins, respectively. This parti-
tion is based on the CATH47–49 category of each
record (proteins with unknownCATH category were
excluded from this analysis), such that similarly
structured proteins are included in either the train-
ing, validation or test set. The model was trained
for amaximum of 50 epochs. An early stopping con-
dition of 10 epochs interrupted training early if no
improvement was observed in the validation set in
terms of the Kullbeck-Leibler divergence after 10
training epochs. In practice, the performance on
the validation set did not improve after 10 to 15
epochs, so we retrained the final model over the
complete dataset for 10 epochs.

Benchmarking

For benchmarking EvoRator2, we used the
ProteinGym substitution benchmark,14 a standard-
ized dataset of 72 proteins targeted in 88 different
DMS assays. Note that DMS data are only used
for testing the performance of the model, not for
training. The ProteinGym dataset summarizes the
performance of several MSA-based and large lan-
guage models over a wide range of protein func-
tions, taxonomic groups, and fitness measures. In
ProteinGym, the DMS score is positively correlated
to fitness, and the performance is quantified in
terms of Spearman’s rank correlation coefficient q
and the area under the ROC curve (AUC) between
model scores and the experimental measurements
as the standard measure of model performance.
We evaluated EvoRator20s performance using
AlphaFold50 predicted structures, because they
are obtained for full-length proteins and therefore
can be more readily mapped to the sequences that
are targeted in DMSs. We managed to obtain the
predicted structures of 46 proteins targeted in 59
DMSs from AlphaFold DB.51 This set of DMSs
was used to evaluate the performance of EvoRa-
tor2. For model comparisons, we considered only
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those AlphaFold DB records whose sequences per-
fectly match the ones that were targeted in the DMS
experiments. Based on this criterion, we used a
subset of 48DMSs of 38 proteins for model compar-
isons. The frequencies predicted by EvoRator2
were transformed to standard DMS score11 using
the following formula:

PredictedDMSscore ¼ log
P xmutð Þ þ e
P xwtð Þ þ e

; e ¼ 0:00001

Where Pðxmut) and PðxwtÞ represent the
predicted frequencies for a mutated and wild-type
protein sequences, respectively.
Overview of EvoRator2 Web Server

EvoRator20s approach is implemented as a public
web server accessible from: https://evorator.tau.ac.
il/. The web server provides an estimate of the site
conservation using the algorithm described in
EvoRator’s paper29 and the allowable substitutions
using the algorithm described in this study (EvoRa-
tor2). EvoRator2 is implemented in Python 3.7. The
web server jobs are processed on ProLiant XL170r
Gen9 servers, equipped with 128 GB RAM and 28
CPU cores per node.
Results

EvoRator2 is tailored to predict the per-residue
distribution of substitutions based on protein
structure and to map substitution profiles that
cannot be well explained using structural
information alone. The features for our machine-
learning approach are extracted from ScanNet
and EvoRator. For training and evaluating the
predictive performance of EvoRator2, we used a
dataset of 20,691 unique chains with their
corresponding residue scores that we mined from
ConSurf-DB. We evaluated the predictive
performance of EvoRator2 in terms of the
Spearman’s rank correlation coefficient q between
true (MSA-based) and predicted (structure-based)
substitution scores. EvoRator2 showed satisfying
performance over the test dataset (Spearman’s
q = 0.610). We observed a minor difference
between the performance of the different methods
on the training (Spearman’s q = 0.617), validation
(Spearman’s q = 0.621) and test sets, indicating
minimal overfitting. The predictions and features
for the test data are provided in Supplementary
Data S1 (https://doi.org/10.5281/zenodo.7709583).
For benchmarking EvoRator2, we examined the

relationship between its predictions and scores
obtained in DMSs, which are considered as a gold
standard for assessing the performance of protein
models.52 The DMS data were taken from the Pro-
teinGym benchmark for substitutions.14 We used
EvoRator2 to predict the residue-level scores for
46 predicted AlphaFold structures of proteins that
were targeted in 59 DMS experiments (Supplemen-
4

tary Data S2, https://doi.org/10.5281/zenodo.
7709583). EvoRator2 performance varied widely
across datasets, ranging from no correlation to high
correlation (Figure 1, Figure S1 and Supplementary
Data S3). Interestingly, in a few cases, EvoRator2
predictions were better correlated with the experi-
mental DMS data compared to state-of-the-art deep
learning methods (Supplementary Data S4). We
suspected that this variation reflects differences in
the quality of structures predicted by AlphaFold.
The predicted aligned error (PAE) is a primary qual-
ity measure of AlphaFold structures.50 Briefly, PAE,
which is calculated for each pair of residues in the
predicted structure, estimates the confidence in
domain packing and large-scale topology. The
lower the PAE score is, the higher the confidence
in the relative position and orientation of different
parts of the model. We therefore examined the rela-
tionship of the mean PAE (i.e. PAE averaged
across all residue pairs) to EvoRator20s perfor-
mance (Figure S2A). We found that EvoRator20s
predictive performance increases in terms of accu-
racy and robustness as the mean PAE decreases,
reaching optimal performance at mean PAE values
that characterize well-predicted structures (mean
PAE < 5). We acknowledge that fact that some
sequence and structure similarity may exist
between our training set and the ProteinGym test
set. However, we found no significant correlation
between EvoRator20s performance and the
sequence identity to the most similar protein in the
training set (Figure S2B).
We further hypothesized that the integration of

structural information and MSA can improve the
accuracy of current methods, presumably by
compensating for potential biases introduced by
poorly aligned regions or insufficient or excessive
divergence in the MSA.1 To test this hypothesis,
we compared the predictive performance of an
MSA based model to that of an integrated structure
and MSA based model, across the ProteinGym
substitution benchmark.14 The MSA based model
includes predictions supplied by an ensemble of
Tranception and EVE models (ETEVE).14 This
model was chosen as baseline model for the analy-
sis, because it is based only on the predictions
made by the most accurate prediction method
reported in ProteinGym substitution benchmark,
and it requires MSA data to make a prediction.14

The second model integrates predictions supplied
by EvoRator2 and ETEVE (EvoRator2 + ETEVE),
which require structural and MSA data, respec-
tively. The input of the EvoRator2 + ETEVE model
is the pair of vectors for a specific position for all
possible substitutions (EvoRator2 scores, ETEVE
scores). The output is a single score-vector for each
substitution. The relationship between this pair and
the final score is modeled separately for each pro-
tein. Specifically, a linear regression model is
assumed, in which the EvoRator2 and ETEVE vec-
tors are transformed by restricted cubic splines with

https://evorator.tau.ac.il/
https://evorator.tau.ac.il/
https://doi.org/10.5281/zenodo.7709583
https://doi.org/10.5281/zenodo.7709583)
https://doi.org/10.5281/zenodo.7709583)


Figure 1. The relationship between EvoRator20s predictions and experimental DMS data. DMS scores for the GFP
protein (reflecting fluorescence levels) were taken from ProteinGym. Plotted are the DMS scores versus EvoRator2
scores (see Figure S1 for more proteins). A generalized additive model (GAM) with smooth functions (solid curve)
with 95% confidence bands (in gray shade) is used to plot the relationship between EvoRator20s predictions and
experimental DMS scores. The scattered data points were binned using hexagonal binning because of the large
sample size.
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five knots.54 This allows for accounting for the non-
linear association between the input and the output
(Figure S1).53 In some cases, the output of DMS
experiments is binary, i.e., for each substitution
whether or not it is pathogenic.14 In this case, the lin-
ear regression model is replaced by a logistic
regression classification model using the same
input. To ensure comparability with respect to input
data, only those DMSs reporting targeted
sequences that are identical to the sequences of
the structures that we obtained from AlphaFold
DB51 were considered for model comparison
(N = 48). Since experimental DMS scores covering
the same genes cannot be easily compared,6 stan-
dard model evaluation procedures such as cross
validation or bootstrap cannot be reliably carried
out using DMS data pooled from different sources.
To overcome this issue, and to correct for the “opti-
mism” stemming from fitting a model to the same
data used to test it, for each DMS and for each
model, we evaluated and compared the predictive
accuracy (measured in R2 or AUC) of the two mod-
els after averaging across 1,000 bootstrap samples
from the same dataset. The EvoRator2 + ETEVE
model slightly but significantly outperformed the
ETEVE model for the majority of proteins, both in
terms of optimism corrected R2 (Wilcoxon signed-
5

rank test, p = 5.4 � 10-7) and AUC (Wilcoxon
signed-rank test, p = 3.5� 10-6), ranging from small
to large gains in these metrics for most and some
DMSs, respectively (Figure S2). We hypothesized
that this variation reflects differences in the quality
of the input MSA. One such quality measure is the
number of effective sequences in the MSA (Neff),

52

which estimates the information content of a given
MSA. To test our hypothesis, we compared the rela-
tionship of MSA quality to performance in the two
models by plotting Neff against the optimism cor-
rected R2 and AUC that were obtained by each
model (Figure S4). We observed that
EvoRator2 + ETEVE outperformed ETEVE across
a wide range of Neff values, and that substantial
gains in optimism corrected R2 and AUC tend to
be concentrated at lower Neff levels values. Notably,
EvoRator2 + ETEVE also provides narrower confi-
dence intervals compared to ETEVE across a wide
range of Neff values, which is always desirable.
Taken together, these results suggest that a high-

quality structure can serve as an effective
alternative to MSA-based methods when few or
no homologs can be found, and that an integrated
structure-MSA based prediction should be
preferred over MSA-based or structure-based
prediction.
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Discussion

An MSA with many diverged sequences may well
capture the structural constraints that drive the
protein evolution. However, a large number of
factors may introduce errors and biases in such
inference. First, MSAs are error prone and some
regions within the MSA are less reliably aligned
compared with others.55 Second, the demand for
a high number of diverged sequences is often
unattainable. For example, the number of protein
structures in the PDB that have few or no sequence
homologs is constantly rising, requiring the develop-
ment of structure-based protein models. Third, in
positions that experienced insertion and deletion
events, especially those that arise due to insertions
in lineages leading to a single protein, there is no
information in the MSA to infer the selective forces.
Fourth, sequences within MSAs are not random
samples from the space of protein sequences.
Rather, they are connected by an underlying phylo-
genetic tree. Some sequences are sampled from
closely related species, while others from diverged
ones. This sampling bias may be corrected by
accounting for the tree topology and its associated
branches while computing the selective constraints.
However, the phylogeny is also subjected to uncer-
tainty, and thus possible errors in the reconstructed
phylogeny may lead to erroneous inference of the
selective forces. While EvoRator2 is trained on
MSA-derived scores, we expect that averaging over
many unrelated examples attenuates these biases.
Here we present EvoRator2, a web server that

implements a neural network that was trained over
thousands of protein structures to predict the
distribution of substitutions at the residue level,
without the need for an input MSA. EvoRator2
exploits a rich structural signature consisting of
physicochemical, geometrical, and graph-based
features, which capture the various constraints
that act on a protein 3D structure. When MSA
information is available, contrasting the two types
of predictions may provide additional information
regarding the evolutionary constraints, e.g.,
selective forces that stem from functional rather
than structural constraints.
EvoRator20s predictions are in good agreement

with experimental DMS data. We have shown that
DMS profiles can be well predicted by integrating
the predictions of EvoRator2 with those of state-
of-the-art MSA-based and sequence-based
methods. It is possible that the accuracy of the
prediction would further increase with more data
and other deep-learning models, particularly graph
neural networks.56 However, the accuracy of the
alignment and 3D structure, as well as the accuracy
of the effect of substitution patterns on fitness (as
determined by DMS or other methods), can also
affect the accuracy of the prediction. The relevant
contribution of each factor awaits further
characterization.
6

Structure-based sequence generative models
such as ESM-IF157 and ProteinMPNN58 can score
substitutions, with some success. These models
generate sequences that agree with the structure,
and thus, can predict allowable substitutions. Our
methodology, in contrast, is trained to predict
PSSMs rather than sequences. A single PSSM is
far more informative than a single sequence, and
PSSM prediction can be readily compared to
MSA-derived PSSMs. More generally, protein
structure and sequence data are combined in meth-
ods such as 3DCOFFEE59 to generate high-quality
MSAs. Moreover, the accuracy of the MSA
increases as the number of combined structures
increases. Such structure-aware MSAs can poten-
tially further improve the performance of MSA-
based methods in scoring substitutions. Our results
demonstrate that for scoring substitutions at the
residue level, a single, high-quality structure can
sometimes be as informative as anMSA, which typ-
ically considers hundreds of sequences. A further
gain in performance would likely be obtained by
combining multiple structures/conformations, raw
sequence data, and MSAs for developing the next
generation of protein models.
The EvoRator2 approach is combined within our

EvoRator web server, which is freely available for
the scientific community at https://evorator.tau.ac.
il. The user interface is intuitive and provides both
visual and tabular outputs.
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